Aggregations을 수행할 때 사용할 데이터

 

Sub Aggregations

aggregation을 통해 집계를 내고 그 결과에서 세부적인 집계를 위해 Sub Aggregation을 지원하고 있습니다.

 

level 필드별 duration의 평균 시간 구하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "byLevel": {
            "terms": {
                "field": "level"
            },
            "aggs": {
                "avgDuration": {
                    "avg": {
                        "field": "duration"
                    }   
                }
            }
        }
    }
}

결과 보기

level의 "info"는 9개가 있으며 9개의 duration 평균은 167.777777입니다.

level의 "warn"는 6개가 있으며 6개의 duration 평균은 333.33333입니다.

level의 "debug"는 5개가 있으며 5개의 duration 평균은 258입니다.

 

level별 action 종류 및 개수 측정하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "byLevel": {
            "terms": {
                "field": "level"
            },
            "aggs": {
                "byAction": {
                    "terms": {
                        "field": "action"
                    }   
                }
            }
        }
    }
}

결과 보기

{
    "took": 4,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 20,
            "relation": "eq"
        },
        "max_score": null,
        "hits": []
    },
    "aggregations": {
        "byLevel": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "info",
                    "doc_count": 9,
                    "byAction": {
                        "doc_count_error_upper_bound": 0,
                        "sum_other_doc_count": 0,
                        "buckets": [
                            {
                                "key": "close_file",
                                "doc_count": 4
                            },
                            {
                                "key": "open_file",
                                "doc_count": 4
                            },
                            {
                                "key": "open_socket",
                                "doc_count": 1
                            }
                        ]
                    }
                },
                {
                    "key": "warn",
                    "doc_count": 6,
                    "byAction": {
                        "doc_count_error_upper_bound": 0,
                        "sum_other_doc_count": 0,
                        "buckets": [
                            {
                                "key": "close_file",
                                "doc_count": 2
                            },
                            {
                                "key": "open_file",
                                "doc_count": 2
                            },
                            {
                                "key": "close_socket",
                                "doc_count": 1
                            },
                            {
                                "key": "open_socket",
                                "doc_count": 1
                            }
                        ]
                    }
                },
                {
                    "key": "debug",
                    "doc_count": 5,
                    "byAction": {
                        "doc_count_error_upper_bound": 0,
                        "sum_other_doc_count": 0,
                        "buckets": [
                            {
                                "key": "close_file",
                                "doc_count": 2
                            },
                            {
                                "key": "open_file",
                                "doc_count": 2
                            },
                            {
                                "key": "close_socket",
                                "doc_count": 1
                            }
                        ]
                    }
                }
            ]
        }
    }
}

"info"는 9개이며 그중에 "close_file"는 4개, "open_file"은 4개, "open_socket"은 1개 입니다.

"warn"는 6개이며 그중에 "close_file"는 2개, "open_file"은 2개, "open_socket"은 1개, "close_socket"은 1개입니다.

"info"는 9개이며 그중에 "close_file"는 2개, "open_file"은 2개, "close_socket"은 1개입니다.

 

 

Aggregation을 수행할 때 사용할 데이터

terms

terms는 데이터의 keyword별 종류 및 개수를 집계하는데 사용합니다.

 

모든 도큐먼트의 level의 종류와 개수 구하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregation을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

level 필드의 데이터 종류와 각 종류별로 도큐먼트가 몇개 있는지 확인합니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "byLevel": {
            "terms": {
                "field": "level"
            }
        }
    }
}

결과 보기

"byLevel" 내부의 buckets를 보면 "key"에는 level필드의 값이 "doc_count"에는 개수를 표현하고 있습니다.

즉 "info"는 9개가 있고, "warn"은 6개, "debug"는 5개가 있는 것을 확인할 수 있습니다.

 

range

값의 범위 별로 도큐먼트의 개수를 측정하는데 사용할 수 있습니다.

 

모든 도큐먼트의 duration의 범위별 개수 측정하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

duration의 범위 100이하, 100부터 200까지, 200부터 300까지, 300부터 400까지, 400이상 으로 범위를 지정하여 검색하겠습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "byDuration": {
            "range": {
                "field": "duration",
                "ranges": [
                    {
                        "to": 100
                    },
                    {
                        "from": 100,
                        "to": 200
                    },
                    {
                        "from": 200,
                        "to": 300
                    },
                    {
                        "from": 300,
                        "to": 400
                    },
                    {
                        "from": 400
                    }
                ]
            }
        }
    }
}

결과 보기

 

histogram

range의 경우 from, to를 통하여 범위를 지정했다면 histogram은 range와 다르게 interval옵션을 통하여 interval단위 별로 필드의 개수를 측정하는 Aggregations입니다.

 

모든 도큐먼트의 duration을 100 단위로 개수 측정하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "byDuration": {
            "histogram": {
                "field": "duration",
                "interval": 100
            }
        }
    }
}

결과 보기

100 단위 별로 도큐먼트의 개수를 확인할 수 있습니다.

 

date_range

range처럼 date필드 또한 범위를 지정하여 집계를 할 수 있습니다.

 

모든 도큐먼트의 start_time 필드를 범위 별로 측정하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

"start_time"필드의 값을 범위 별로 측정하도록 하겠습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "date_range": {
            "date_range": {
                "field": "start_time",
                "ranges": [
                    {
                        "from": "2021-09-12 10:10:10",
                        "to": "2021-09-12 10:10:15"
                    },
                    {
                        "from": "2021-09-12 10:10:15",
                        "to": "2021-09-12 10:10:20"
                    },
                    {
                        "from": "2021-09-12 10:10:20"
                    }
                ]
            }
        }
    }
}

결과 보기

각 시간대별로 도큐먼트의 개수를 확인할 수 있습니다.

 

date_histogram

histogram과 같이 date_histogram도 interval 옵션을 넣어 각 interval별 집계를 측정할 수 있습니다.

interval옵션에 second, minute, hour, day, month, week 등을 넣을 수 있습니다.

 

모든 도큐먼트의 start_time 필드를 1분 별로 측정하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "match_all": {}
    },
    "aggs": {
        "date_his": {
            "date_histogram": {
                "field": "start_time",
                "interval": "minute"
            }
        }
    }
}

결과 보기

 

 

 

 

Aggregation을 수행할 때 사용할 데이터

 

cardinality

cardinality는 데이터의 종류가 몇 가지 있는지 확인하는 데 사용됩니다.

 

user_id가 1인 도큐먼트에 action이 몇가지 종류가 있는지 확인하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "bool": {
            "must": [
                {
                    "match": {
                        "user_id": "1"
                    }
                }
            ]
        }
    },
    "aggs": {
        "cardinality_by_action": {
            "cardinality": {
                "field": "action"
            }
        }
    }
}

결과 보기

"cardinality_by_action"를 통해 user_id가 1인 도큐먼트에서는 action의 종류가 4개가 있다는 것을 확인할 수 있습니다.

실제로 "open_file", "close_file", "open_socket", "close_socket" 이렇게 4개입니다.

 

percentiles

각각의 값을 백분율로 보는 Aggregations입니다. 퍼센트 옵션을 설정하지 않으면 디폴트로 [1, 5, 25, 50, 75, 95, 99]로 설정됩니다.

 

user_id가 1인 도큐먼트에 duration의 백분율 확인하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "bool": {
            "must": [
                {
                    "match": {
                        "user_id": "1"
                    }
                }
            ]
        }
    },
    "aggs": {
        "percentiles_by_duration": {
            "percentiles": {
                "field": "duration"
            }
        }
    }
}

결과 보기

하위 1%의 값은 100이며, 상위 99%의 값은 430인 것을 확인할 수 있습니다.

 

퍼센트를 설정하여 확인하기

이제는 디폴트 퍼센트값이 아닌 퍼센트를 사용자가 [25, 50, 75]로 지정하여 검색하겠습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "bool": {
            "must": [
                {
                    "match": {
                        "user_id": "1"
                    }
                }
            ]
        }
    },
    "aggs": {
        "percentiles_by_duration": {
            "percentiles": {
                "field": "duration",
                "percents": [ 25, 50, 75 ]
            }
        }
    }
}

결과 보기

 

percentile_ranks

지정한 값이 백분율로 몇 퍼센트 안에 속하는지 확인할 수 있습니다.

values라는 옵션으로 값을 지정할 수 있습니다.

 

user_id가 1인 도큐먼트에 필드 duration에 100, 200, 300의 값이 있다면 백분율 몇 퍼센트인지 확인하기

우리는 데이터를 가져오는 것이 목적이 아닌 Aggregations을 수행하는 것이 목적이기 때문에 "size"를 0으로 설정하였습니다.

api POST http://localhost:9200/test-log-index-2021-09-12/_search
header content-type: application/json
body {
    "size": 0,
    "query": {
        "bool": {
            "must": [
                {
                    "match": {
                        "user_id": "1"
                    }
                }
            ]
        }
    },
    "aggs": {
        "rank_by_duration": {
            "percentile_ranks": {
                "field": "duration",
                "values": [ 100, 200, 300 ]
            }
        }
    }
}

결과 보기

 

+ Recent posts